Vacuum Circuit Breakers Become Prevalent

This "Cut the Copper" blog examines how the medium-voltage (MV) vacuum circuit breaker came into surface and its benefits over air-magnetic breakers.

05/02/2012


In the 1970s, GE dusted off a fault interruption technology initially developed in its labs 45 years earlier, introduced this new product, then placed it into commercial service—the medium-voltage (MV) vacuum circuit breaker. This breaker came onto the market with significant advantages over the medium voltage air-magnetic breakers it replaced (as well as MV oil circuit breakers prior to that).

The new technology reduced the size, weight, cost, complexity and maintenance requirements of previous technologies, while increasing the durability and longevity of the breaker, and the new breaker quickly gained wide acceptance in all markets. Other manufacturers quickly followed suit with new vacuum breaker designs of their own.

Side and rear views of a 38KV vacuum circuit breaker. Courtesy: Siemens, USAFault interruption was crisp and fast and precise, and after interrupting even a large fault within just microseconds after contact opening and the first current-zero on each pole, the contacts that had just interrupted the fault arc inside the vacuum bottles instantly healed themselves, by condensing and re-depositing the plasma of the arc back onto the contacts as fresh new, smooth metal.

This was fantastic for interrupting a large fault, but turned out to be not so good for switching on and off inductive loads (like MV transformers and motors) – as users soon learned. The main problem was that upon opening a breaker, the current that had been flowing through the inductive load stopped flowing instantly. The interruption of current flow went from SOMETHING to NOTHING in virtually zero time, and the energy trapped inside the inductor instantly displayed itself as a huge transient voltage across its outer winding terminals, and could also stressfully distribute the excessive voltages deep within the interior windings and winding layers of the transformer.

This was a far different current interruption than had been provided by air magnetic breakers, which had drawn the fault arc comparatively slowly through a long and large “arc quencher” path, causing a relatively lengthy interruption and arc cooling process. The abruptness of operation of the new vacuum breakers caught the industry off guard and unprepared for a new phenomenon - frequent catastrophic failures of downstream transformers, in ways that had almost never been experienced before. 



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
40 Under 40; Performance-based design; Clean agent fire suppression; NFPA 92; Future of commissioning; Successful project management principles
BIM coordination; MEP projects; NFPA 13; Data center Q&A; Networked lighting controls; 2017 Product of the Year finalists
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me