Use NFPA 3 to coordinate fire and life safety projects

03/25/2013


Planning phase

The planning phase includes development by the owner’s design professionals to address the needs of the facility. These needs comprise the useable area requirements, basic area configurations, required minimum and maximum room dimensions, area uses, anticipated occupant characteristics, and other high-level user needs. The code analysis was performed by the owner’s design professionals prior to the mechanical and fire suppression contractor’s involvement. The applicable codes to be met as well as any other requirements in excess of the minimum code were previously identified. The need for a commissioning plan was determined with specific details of each system delegated to the design-build team—similar to a deferred submittal. The design-build team was awarded the project based on factors such as qualifications, overall value, and justification of how the owner’s needs would be met through a preliminary BOD document.

One of the contract documents requires that the commissioning agent be separate, both by contract and employment, from the design team. The intent of this requirement is to meet NFPA 3 section 4.2.1.1.3 and provide an objective and unbiased point of view on how the systems operate and work together. The commissioning team includes the following:

  • The owner’s project manager
  • Operating personnel representatives
  • Owner technical experts
  • The design-build construction contractor and subcontractors/engineers (design professionals)
  • Commissioning agent
  • Architect
  • Life safety engineer.

The design-build contractor and the design-build subcontractor concept reduced the amount of stakeholders by not having an engineer and contractor from separate organizations. The process also combined elements from the design phase into the construction phase and vice versa.

Design phase

Southland Industries project foreman James Clayton (left) and journeyman Bill Witt tighten the gaskets on a check valve before flowing the two 4500 gpm fire pumps. Courtesy: Southland IndustriesThe design phase includes developing and revising the initial BOD, specifications, drawings, calculations, and coordination between disciplines; and coordinating the interaction of testing procedures. There will be a total of six submissions during the design phase. These submissions ensure that the owner’s needs are captured and revised as necessary. Throughout this process, the commissioning schedule and commissioning criteria will be revised to meet the design changes prompted by the review process. Sequence of operations and performance objectives are identified in this process. The owner’s expectations are fully vetted to assist in meeting all stakeholders’ expectations. The presence of all stakeholders allows the cause-and-effect relationship to be determined and rectified more efficiently.

One example of the changes to the commissioning plan and the overall design is a potential modification based on building area use and configuration revisions. If the systems are altered to accommodate the new needs of the space, so would the testing requirements and durations of the testing. An area specified for storage has a tentative reconfiguration and possible ceiling height increase of 2 ft. The desired change could potentially increase the fire sprinkler system demand, causing the secondary water storage tank size to increase from 63,000 gal to 180,000 gal. This change could also affect the required ratings of the fire pump.

The importance of NFPA 3 is to capture the domino effect by such a change. A larger fire pump requires a larger amount of water to be discharged on-site during testing. The design team would have to investigate the site drainage and verify if it could accommodate the additional drainage demands. The larger electric fire pump would also require additional horsepower. The design team would have to determine if the current emergency generator could handle this larger load and whether testing criteria should be modified based on this new information.

The high-value data center requires several double interlock pre-action systems. Clean agent systems are to be used. The interaction between both of these systems, the fire alarm panels, and other fire protection devices is being considered in the commissioning plan. The system matrix is provided to clarify sequence as well as complete testing development.

Construction phase

The fire suppression systems engineering and shop drawings are one combined plan. This method eliminates the concern of acceptable and compliant materials being used. The shop drawings and sequence of operations are revisited for coordination. Field installation personnel and the commissioning agent make sure that any changes adhere to the approved drawings and specifications. Training programs for all of the systems are in development. As the design becomes more concrete, so will the testing requirements. These requirements will then be incorporated into the formal commissioning plan.

Occupancy phase

The documented fire protection commissioning plan will be used to ensure the building is ready for turnover to the building occupants. The plan will address the required testing and inspections as well as cover all required training, documentation, emergency contact information, as-built documents, warranties, operations and maintenance procedures, periodic testing requirements, and system limitations.

The commissioning plan’s most beneficial use will be to provide the owner with a consolidated document of the overall life safety performance and testing requirements for future use. Changes are often desired and/or required after the initial contractor and design team has completed their scope of work. This is also true if the building owner and end users change. Future modifications can be made without being destructive to the fire protection method or testing requirement initially coordinated.

NFPA 3 takes a more contemporary approach to construction and focuses on commissioning the fire and life safety systems at the beginning and throughout a project, rather than at the end. This method allows the design and construction to stay in line with the goals of system performance. Practices recommended in NFPA 3 are powerful tools in project development, project management, construction, and closeout. Following the steps provided in the document can greatly reduce the frustrations of a well-constructed project lacking coordination of the commissioning and testing phase. The document provides a uniform approach; the NFPA formalized guide has the potential to improve project outcome for all involved in the commissioning of the required fire and life safety systems.

NFPA 3 guides data center design

This example illustrates how a fire protection engineer may use the NFPA 3 document to develop the fire suppression portion of the plan and how it may assist in the overall project commissioning. A design-build, U.S. Green Building Council LEED-certified data center project with supporting administrative buildings contractually required a commissioning plan. Because the NFPA 3 document was not formally released until after the project requirements were developed, many of the project’s fire suppression procedures will not follow the exact order of the recommended practices, though the overall goals remain the same.

The project required design of the following fire protection systems: fire service entrance, secondary fire water storage tank, fire pump, wet and double-interlock pre-action sprinkler systems, and clean agent fire suppression systems. Using several registered design professionals, the mechanical and fire suppression contractor served as the engineers of record on the project. Meanwhile, two additional fire protection engineers on the design team included the fire alarm/mass notification designer and the fire and life safety consultant. Successfully implementing the required fire protection systems is vital to the high-value data center (which is considered such, based on the type of data being stored), requiring survivability of the data in the event of a fire, natural disaster, or any other occurrence. 


Corey L. Wallace is associate principal engineer at Southland Industries. He is a licensed fire protection engineer with expertise in fire protection systems design. Wallace has more than 11 years of design and management experience as a consultant as well as a contractor. 


<< First < Previous 1 2 3 Next > Last >>

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Water use efficiency: Diminishing water quality, escalating costs; Lowering building energy use; Power for fire pumps
Building envelope and integration; Manufacturing industrial Q&A; NFPA 99; Testing fire systems
Labs and research facilities: Q&A with the experts; Water heating systems; Smart building integration; 40 Under 40 winners
Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.