Transformer efficiency: Minimizing transformer losses


Figure 2: This graph compares core and load losses of 80-C rise and 150-C rise transformers. Courtesy: Lovorn Engineering Assocs.Distribution transformers and TP-1

Transformers that have primary voltages of 34.5 kV or less and secondary voltages of less than 600 V also must meet the efficiency ratings of TP-1 at a linear loading of 35%. However, TP-1 covers only 3-phase distribution transformers between 15 kVA and 1,000 kVA, so the larger transformers are not addressed by this standard. In addition, the distribution transformers are traditionally designed to be loaded to between 50% and 75%. As noted previously on the smaller, dry-type transformers, loadings that exceed the 35% TP-1 point will have significantly greater losses than the tabularized values. So while the goal of TP-1 was very lofty, it does not apply as well to actual installations. 

Historically, it was common to see distribution transformers that had impedance ratings of 5.75%. As the electrical utilities have worked to reduce their operating costs, the impedance for distribution transformers has dropped to values as low as 1.5% impedance. Since the utilities typically absorb the transformer losses as a part of their operating costs, reducing the impedance percentage from 5.75% to 1.5% has saved more than 70% of their losses at the transformer. This turned out to be very convenient because TP-1 was requiring that these transformers have higher efficiencies at the same time that the utilities were attempting to reduce their operating costs. 

This process had a negative side effect that was not immediately evident but had a major impact on the electrical engineer’s design: the available fault duty on the secondary of the transformer. A 1,000 kVA transformer with 5.75% impedance will have an available fault duty of 21,000 A at 480 V, assuming an infinite bus on the primary side. Given the same criteria for a 1.5% impedance transformer would result in an available fault duty of 80,000 A. The same transformer operating with a 120/208 V secondary will have available fault duties of 48,000 A and 185,000 A, respectively. This operating efficiency improvement has a major impact on the electrical system design, particularly at the lower secondary voltage of 120/208 V (see “Sizing stepdown transformers”). 

While TP-1 did not address transformers that were rated larger than 1,000 kVA, there have been similar reductions in their impedances to affect matching savings for these larger transformers. As one would anticipate, available fault currents for a 2,500 kVA transformer are dramatically, though proportionally, larger. At 480 V, the fault duties would increase from 52,000 A to more than 200,000 A for a 1.5% impedance transformer. Thank goodness transformers of this size do not commonly come with a 208-V secondary, because the fault current would approach 500,000 A.


In the engineer’s quest to reduce energy consumption, matching the transformer to its anticipated load is critical in achieving that goal. By applying a 150-C rise transformer to a lightly loaded linear circuit, the losses noted in TP-1 will be very close to the actual losses. However, heavier transformer loadings will suggest the engineer design around one of the lower temperature-rise transformers, such as the 115 C or 80 C transformers. When there are significant harmonically rich loads that are to be fed by a dry transformer, the lowest losses are likely to be achieved by using K-rated transformers that are sized for the anticipated harmonic currents.

Injudicious transformer selection can exceed the losses shown in TP-1 by 300% to 400%, resulting in a negative return on investment for the increased cost of the higher efficiency transformers.

Know the loss data, loading when specifying transformers

In researching this article, the author found it quite interesting that published loss data for all of the major manufacturers queried was virtually nonexistent. When asking about losses for operating points other than the 35% loading for TP-1, there appeared to be nothing available. Also, loss data for transformers operating at 80-C rise, 115-C rise, and K-rated transformers were also unavailable. Asking your local transformer sales representative for loss data at the operating point to which you are designing and for the type of transformer that you are designing around may save your client many dollars in energy savings. However, inserting the standard 150-C rise transformer into your design, while planning on operating the transformer at a point other than 35% loading and with a significant percentage of nonlinear loads, could cost your client significantly over the life of a transformer.

Sizing stepdown transformers

One cautionary note on stepdown transformers: When transforming from 480 V to 120/208 V, these low-loss, dry-type transformers can sneak up on your design. With the higher impedances of yore, an engineer usually did not have to worry about having higher interrupting duty branch circuit breakers when they were connected downstream from a dry transformer and the rest of the distribution system was a fully rated system. With the lower impedances, transformers as small as 112.5 kVA can have available fault duties that would require the use of breakers with an interrupting duty of more than 10,000 A. When using dry transformers such as a 300 kVA, 480/120/208 V, available fault duties can exceed 40,000 A, requiring your electrical design to use 65,000 AIC breakers. It is better to break the 120/208 V load into small divisions so that the maximum transformer size does not exceed 75 kVA with an impedance of at least 2% and the lower interrupting breakers (read: less expensive) may be used. 


Lovorn is president of Lovorn Engineering Assocs. He is a member of the Consulting-Specifying Engineer editorial advisory board.

<< First < Previous 1 2 Next > Last >>

Anonymous , 06/27/13 11:00 AM:

My opinion on footnote at the bottom the June 2013, Article "Minimizing Transformer losses" gives me the opinion that the author did not try very hard to get transformer loss data. I was able to find data from several vendors on the internet without to much effort. For example,

One item that should have mentioned was the definition of efficiency.
Paraphrasing the efficiency definition in NEMA TP-1,

Efficiency = Power OUT/Power IN

%EFF = 100 x kVA x Output/(kVA x Output + kW losses at Output loading)

A reader could have been mislead in believing percent base is the transformer full load rating. In the article 1000W at 35% loading on a 75kVA transformer would be 1000*100/(0.35*75000)=3.8% losses and not 1.3% as stated.

As mentioned the transformer loss are the sum of the no-load losses and load losses. The load losses are proportional to the square of the load on the transformer and not protortional to the load. Since most of the load losses are I^2*R, transformer with low impedance and resistance tend to have lower load losses. Since the curve 'total losses(kW)' verses 'Transformer loading*%)' did not state the basis for the curve it could be missleading. For the curve to be useful the percent coil resistance would have to be the same. Generally the lower the %impedance to lower the full load losses. On small transformers the user does not have much control over the impedance since the small transformers tend to be off the shelf types. Sometimes the same size transformer from different vendors can significantly different impedance. Lower impedance also means higher fault currents which is another item that has to be considered.
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
BIM coordination; MEP projects; NFPA 13; Data center Q&A; Networked lighting controls; 2017 Product of the Year finalists
Emergency lighting; NFPA 3 and 4; Integrated building systems; Smart lighting, HVAC design
Designing for energy efficiency; Understanding and applying NFPA 101 for mission critical facilities; Integrating commissioning and testing for fire alarm systems; Optimizing unitary pumping solutions
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
click me