The loop, the whole loop, and nothing but the loop

Sometimes we need to think about an individual control loop. Other times we need to consider the larger control system. You should be able to do either when appropriate.


As control engineers, we often get tunnel vision. We get very focused on a single task such as creating our control module configuration and lose sight of the bigger picture – creating a control system. While working on my bachelor’s degree, I worked as an instrument designer for big A&E firms that built power generation stations. My job was to specify instrumentation and control elements for these projects, design control panels, create loop sheets for the hookup of the electronic instruments, and installation details for the sensing side – or in the case of pneumatic instruments – the pneumatic tubing. At that point in my career, a loop was from sensor to controller and from controller to control element. I had nothing to do with specifying the controller itself, which at that time was typically a standalone device mounted on the control panel. I also completed all drawings to control the operation of electrical prime movers, which were wired back to the switches on the control panel.

Jump forward in time a few years to the introduction of the DCS. Instead of following my usual practice of calling the Bailey or Foxboro guy and just buying a standalone PID controller, I was now expected to program the control function as well as direct the designer on the instrument and control element design. This really did open up a world of possibilities for the control design strategy that would have been impractical before for creating highly interactive and complex controls. Unfortunately, for many of my contemporaries who hadn’t come up through the path I had, it also focused them on what was happening in the space between the input and output terminals with little or no regard to what was happening outside the box.

During that period, I moved from the design engineering firms to work for a DCS supplier. In working with some of their project teams, I would often inquire into the design of specific control modules, which they referred to as control loops. My inquiries would usually take the form of, “What kind of transmitter are you using or what kind of control element, valve, pump, or fan are you operating?”

To my horror, the usual answer was, “I don’t know.” To make matters worse, that was often followed with, “It doesn’t really matter, this will control anything.”

Now, on the surface, this is a reasonable answer since you can control almost anything in a typical process with a PID function and some appropriate interlocks or permissives. The problems arise when you can’t answer simple loop questions like:

“Is the loop direct or reverse acting?”
“Does the valve fail open or fail closed?”or,
“Is the measurement linear?”

Without understanding the whole loop, you can easily misapply the control functions within the control module. Other more esoteric aspects of the loop that might need understanding could include the need to start a very large fan against a closed damper to prevent overloading the motor. If the loop designer doesn’t know this, then the controls may be designed to force the operator to startup the process incorrectly. In many ways, it is now more important than ever that the person designing the controls understand the whole loop to ensure that he or she doesn’t prevent the operators from doing their job.

This post was written by Bruce Brandt, PE. Bruce is the DeltaV technology leader at MAVERICK Technologies, a leading system integrator providing industrial automation, operational support, and control systems engineering services in the manufacturing and process industries. MAVERICK delivers expertise and consulting in a wide variety of areas including industrial automation controls, distributed control systems, manufacturing execution systems, operational strategy, and business process optimization. The company provides a full range of automation and controls services – ranging from PID controller tuning and HMI programming to serving as a main automation contractor. Additionally MAVERICK offers industrial and technical staffing services, placing on-site automation, instrumentation and controls engineers.

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Economics of HVAC systems; NFPA 110-2016; Designing and choosing modular data centers
Combined heat and power; Assessing replacement of electrical systems; Energy codes and lighting; Salary Survey; Fan efficiency
Commissioning lighting control systems; 2016 Commissioning Giants; Design high-efficiency hot water systems for hospitals; Evaluating condensation and condensate
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
Driving motor efficiency; Preventing Arc Flash in mission critical facilities; Integrating alternative power and existing electrical systems
Putting COPS into context; Designing medium-voltage electrical systems; Planning and designing resilient, efficient data centers; The nine steps of designing generator fuel systems
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
click me