Substation physical security back on the front burner

Physical security for electrical substations has acquired new urgency and requires fresh thinking.

10/23/2012


In the past, fences and locked doors prevented unauthorized access to power grid substations as much for public safety as physical security. This strategy worked to ensure that simple mischief didn’t end badly in a high-voltage environment.

In a world with heightened concerns about terrorism and, thus, cyber security, and in tough economic times when the theft of valuable materials is more frequent, physical security for electrical substations has acquired new urgency and requires fresh thinking.

First, let’s consider theft, probably the more frequent and ubiquitous challenge. The high price of copper and steel have created a significant issue for the protection of substations, which incorporate substantial amounts of both materials. Theft of the copper ground wire, for instance, compromises the integrity of the substation, creates a safety hazard for thief, public and utility workers alike and incurs significant costs.

On the cyber security side, the old adage has it that presented with electronics and time, a hacker will prevail.

The consulting engineer needs to be aware that in this environment, physical security will need to be more sophisticated than in the past. Fences and locked doors may need to incorporate more robust designs and strategies and be augmented by closed-circuit video monitoring, intrusion detection devices, tampering alarms, and the like. Obviously, those remote devices communicate back to security personnel, effectively marrying physical security to cyber security.

Positive identification and electronic access control, governed by IEEE Standard P1402, currently under revision, is now the established, minimum requirement for security at power substations. It describes the requirements for positive access control, monitoring of facilities, and delay/deter features. Formerly, IEEE P1402 was a “guideline” but, due to increased intrusion, theft, and the threat of terrorism, it is being upgraded to a standard. According to this standard, the degree of monitoring and access control must be designed to match the nature of the threat.

It should come as no surprise that the convergence of physical and cyber security means that IEEE Standard P1402 also is referenced in cyber security requirements. In fact, virtually all cyber security standards reference physical security.

Cyber security systems govern communications, access to intelligent electronic devices (IEDs) and to human machine interfaces (HMIs). Security depends on the timely detection of malevolent activity. If unmonitored access is allowed at a substation, the cyber hacker’s threat to the grid’s integrity increases by the minute.

Finally, not only must the engineer design physical security features into the substation, just as importantly, they must address security during the construction phase when valuable materials are vulnerable. In this regard, a traditional notion had it that one could achieve “security via obscurity”–that is, that a substation and/or its construction site were most vulnerable near population centers and safer if they were in the proverbial boondocks.

No longer. While a substation may be seldom seen, an obscure location also gives cover to determined perpetrators.

In physical and cyber security terms, that means keeping up your guard. Vulnerable attack vectors may be inadvertently created by fuzzy thinking about the apparent obscurity of a substation location, when that is precisely the sort of location that a terrorist or thief would choose to exploit.  


Sam Sciacca is an active senior member in the IEEE and the International Electrotechnical Commission (IEC) in the area of utility automation. He has more than 25 years of experience in the domestic and international electrical utility industries. Sciacca serves as the chair of two IEEE working groups that focus on cyber security for electric utilities: the Substations Working Group C1 (P1686) and the Power System Relay Committee Working Group H13 (PC37.240). Sciacca also is president of SCS Consulting. 



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
Water use efficiency: Diminishing water quality, escalating costs; Lowering building energy use; Power for fire pumps
Building envelope and integration; Manufacturing industrial Q&A; NFPA 99; Testing fire systems
Labs and research facilities: Q&A with the experts; Water heating systems; Smart building integration; 40 Under 40 winners
Maintaining low data center PUE; Using eco mode in UPS systems; Commissioning electrical and power systems; Exploring dc power distribution alternatives
Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.