Standard for smart grid established

IEEE 2030, which was recently approved and published, establishes a smart grid interoperability reference model and knowledge base for manufacturers.

09/19/2011


IEEE announced that IEEE 2030 – IEEE Guide for Smart Grid Interoperability of Energy Technology and Information Technology Operation with the Electric Power System (EPS), End-Use Applications, and Loads – has been approved and published. IEEE 2030 establishes a globally relevant Smart Grid interoperability reference model and knowledge base that can be used by utilities who are developing their infrastructure roadmaps, by manufacturers who are planning Smart Grid systems and applications, by scientists who are conducting research, by governments who are crafting regulations and by standards-development organizations (SDOs) who are writing additional standards for the Smart Grid.

IEEE 2030 provides alternative approaches and best practices for Smart Grid work worldwide and defines terminology, characteristics, functional performance and evaluation criteria and the application of engineering principles for Smart Grid interoperability of the EPS with end-use applications and loads. Additionally, it defines design tables and the classification of data-flow characteristics necessary for interoperability, with emphasis on functional interface identification, logical connections and data flows, communications and linkages, digital information management, cyber-security and power generation usage.

Work has already commenced on three IEEE 2030 extensions:

  • IEEE P2030.1 – Guide for Electric-Sourced Transportation Infrastructure – is intended to establish guidelines that can be used by utilities, manufacturers, transportation providers, infrastructure developers and end users of electric-sourced vehicles and related support infrastructure in addressing applications for road-based personal and mass transportation.
  • IEEE P2030.2 – Guide for the Interoperability of Energy Storage Systems Integrated with the Electric Power Infrastructure – is intended to help users achieve greater understanding of energy storage systems by defining interoperability characteristics of various system topologies and to illustrate how discrete and hybrid systems may be successfully integrated with and used compatibly as part of the electric power infrastructure.
  • IEEE P2030.3 – Standard for Test Procedures for Electric Energy Storage Equipment and Systems for Electric Power Systems Applications – is intended to establish a standard for test procedures around verifying conformance of storage equipment and systems to storage-interconnection standards.

www.ieee.org

Institute of Electrical and Electronics Engineers (IEEE)

- Edited by Chris Vavra, CFE Media, www.cfemedia.com

 



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.