Special report: Fan efficiency guidelines

08/13/2013


Future fan efficiency requirements 

DOE’s approach to defining fan classes and assigning a potentially unique efficiency requirement for each of them is one that AMCA is looking to apply to future proposals for model energy codes and standards. 

Additionally, because some types of fans are structurally integrated with motors and drives, a metric that incorporates the drive, motor, and control, is being developed. AMCA is working with European and Asian standards bodies and manufacturers to develop an internationally harmonized metric for “wire-to-gas” efficiency ratings, which could be applied to fan-motor and fan-motor-drive combinations. Also, some fan products, such as powered roof/wall ventilators, are assembled and sold with motors and drives, making a wire-to-gas metric more consistent with them, as well. 

An example of a wire-to-gas metric is cfm-per-Watt, or W/cfm, which would provide a convenient way to establish fan efficiency requirements for fan-motor assemblies while FEGs are retained fans less motor and drive.

Beginning with the publication of AMCA 205 in 2010, the development of fan-efficiency provisions in model codes and standards for energy efficiency and green/high-performance construction began in 2012, and is picking up pace. A federal efficiency standard is under development by the DOE and might be active as early as 2019. Energy savings will come from requirements for minimum fan efficiency grades; however, greater energy savings is expected from provisions that have sizing/selection windows that encourage larger-diameter fans running at slower speeds and closer to peak-efficiency ratings.

First-generation fan efficiency provisions in U.S. model codes and standards are written around AMCA 205 and contain a minimum FEG rating, a sizing/selection window, and exemptions that limit applicability to specified sizes, types, and applications. Future, or second-generation fan efficiency requirements may include additional metrics, such as a wire-to-gas rating.


Michael Ivanovich is director of strategic energy initiatives with AMCA International. Ivanovich develops and advocates consensus positions among AMCA member companies worldwide on codes, standards, and government regulations for energy efficiency and green construction.


References

  1. International Code Council, International Green Construction Code (IgCC), 2012.
  2. ASHRAE, ANSI/ASHRAE/IESNA 90.1-2013, Energy Standard for Buildings Except Low-Rise Residential Buildings. In press.
  3. ANSI/AMCA 205-12 Energy Efficiency Classification for Fans, Air Movement and Control Association International, 2012.
  4. Cermak, J. and Ivanovich, M., April 2013. “New Fan Efficiency Requirements for ASHRAE Standard 90.1-2013,” ASHRAE Journal, ASHRAE.
  5. Brendel, M. May 2013. “The Role of Fan Efficiency in Achieving Energy Reduction Goals,” HPAC Engineering Magazine, Penton Media. (in press)
  6. Federal Register, Feb. 1, 2013, “Energy Efficiency Program for Commercial and Industrial Equipment: Public Meeting and Availability of the Framework Document for Commercial and Industrial Fans and Blowers.” Available at http://1.usa.gov/VLkOMx

<< First < Previous 1 2 3 Next > Last >>

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.