Self-Tuning Controllers Auto-Select P, I, D Values

09/01/1997


Tuning a PID controller is conceptually simple--observe the behavior of the controlled process and fine tune the controller's proportional (P), integral (I), and derivative (D) parameters until the closed-loop system performs as desired. However, PID tuning is often more of an art than a science. The best choice of tuning parameters depends upon a variety of factors including the dynamic behavior of the controlled process, the controller's objectives, and the operator's understanding of the tuning procedures.

Self-tuning PID controllers simplify matters by executing the necessary tuning procedures automatically. Most observe the process' reaction to a disturbance and set their tuning parameters accordingly. However, no two go about accomplishing those tasks in the same way.

'Heuristic' self-tuners, for example, attempt to duplicate the decision-making process of an experienced operator. They adjust their tuning parameters according to a series of expert tuning rules such as 'IF the controller overreacts to an abrupt disturbance THEN lower the derivative parameter.'

Model-based approach
A more common approach to automatic parameter selection, however, involves a mathematical 'model' of the process--an equation that relates the present value of the process output to a history of previous outputs and previous inputs applied by the controller. If the model is accurate, the controller can predict the future effect of its present efforts and tune itself accordingly.

For example, a process that reacts sluggishly to a step input can be modeled with an equation that gives the current output as a weighted sum of the most recent output and the most recent input. A self-tuner can choose the weights in that sum to fit the model to the observed process behavior. With the model in hand, the self-tuner can go on to determine how much proportional, integral, and derivative action the process can tolerate. In the case of a sluggish process, the model will show that the controller is free to apply aggressive control efforts. The self-tuner will then set the P, I, and D parameters to relatively high values.

Variations on the theme
Exactly how high or low the tuning parameters should be set depends on the performance objectives specified by the operator. If, for example, the settling time is to be limited to some maximum value, the required tuning parameters can be determined by analyzing the time constant and the deadtime of the process model. On the other hand, if excessive overshoot is the operator's principal concern, the controller can be configured to select tuning parameters that will limit the rate of change of the process variable.

Self-tuning controllers also differ in their data collection techniques. Some apply a series of artificial disturbances to the process in order to observe how it behaves. Others make do with data collected during normal loop operations. The latter approach limits the waste and inconvenience caused by intentionally disturbing the process, but generally produces much less useful information about the process' behavior.

Which of these many variations is appropriate for a given application of self-tuning control is up to the operator. A single universally applicable technique has yet to be developed.





Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me