Matching servo amplifiers to brushless DC motors

04/01/1997


A servo system consists of a number of elements (see diagram). One aspect of the system integration process involves matching the servo amplifier to the brushless dc motor. This may seem as simple as selecting the amplifier and motor from the same manufacturer. Unfortunately, that isn't always possible or desirable.

flowcht.gif (7941 bytes)

Several factors will influence the way a brushless dc motor and a servo amplifier interact:

Motor winding type-- Brushless dc motors generally have a three-phase winding with a wye connection and produce trapezoidal torque characteristics. (Motors that produce sinusoidal torque format are commonly called 'ac servomotors.') If you've selected a brushless dc motor for an application, the servo amplifier should be designed for this type of motor and not an ac servomotor or a brush-type servomotor.

Commutation sensor configuration-- Most brushless dc motors use three hall effect sensors for commutation. These sensors read the motor's rotor position andenable the amplifier to switch the three winding phases on and off in the proper sequence to produce rotary motion. Confirm that the servo amplifier you're considering is designed to accept hall sensor feedback and can be configured for your motor's sensor spacing (60 or 120 degrees).

DC supply voltage-- Once a brushless dc motor that operates within your application's required speed range has been selected, calculate the supply voltage needed to power the motor at maximum speed and corresponding load using:

E = T L T + K E

where, E = supply voltage, T L = load torque, R = motor winding resistance, K T = motor torque constant, K E = motor voltage constant, N = motor speed at full load. Take as an example a 3/8 hp brushless dc motor (4-in. frame), with motor constants K T =75 oz-in./A, R=3.4 {OMEGA}, and K E =42 V/krpm. If we assume T L =150 oz-in. and the desired speed is 2,500 rpm, the above equation yields E=114 V for supply voltage.

Current limits-- Servo amplifiers have two adjustable current limits: continuous and peak. Continuous current limit should be at least as high as the rms current of the motor in your application. Peak current limit should be at least as high as the current drawn from the motor during peak loading conditions.

If current limits of the amplifier are higher than the ratings of the brushless dc motor, the amplifier's adjustment should be turned down accordingly in order to prevent overloading the motor.

Mode of operation-- Most servo amplifiers can be configured for three modes of operation: current (torque) mode, velocity mode, and open-loop mode. Current mode is generally used for positioning involving a digital motion controller and encoder feedback. Velocity mode is typically used where four-quadrant speed control is needed, such as an inclined conveyor with an overhauling load. Open-loop mode is generally used only during the initial set-up of the servo amp.

Motor-to-amp connections-- Connecting a brushless dc motor and servo amplifier made by different manufacturers can often be confusing. One reason is that no industry standard exists for labeling the three motor phases.

It's likely that the manufacturer of your servo amplifier has some experience in properly connecting the brushless dc motor you're using. The motor manufacturer is another possible source for the appropriate connection diagram. If a diagram is unavailable, you will have to experiment.

First, connect the hall sensors. After the sensor power connections are made, it's the relationship between the winding connections and sensor connections that matters--not how the three winding connections are actually made.

With the sensors connected, six possibleways exist for connecting the three winding leads. Four of these will cause the brushless dc motor to not operate at all. That leaves only two connections, one of which is correct. The incorrect connection will result in erratic operation of your motor.

When all of the above factors are evaluated, you should have a properly matched brushless dc servo system.





No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Smoke control: Designing for proper ventilation; Smart Grid Standard 201P; Commissioning HVAC systems; Boilers and boiler systems
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.