Kaleida Health, Clinical, Medical Research Building

New construction: Kaleida Health, Clinical and Medical Research Building; Cannon Design


The Kaleida Health, Clinical and Medical Research Building: Gates Vascular Institute (GVI), and UB Clinical Translational Research Center/Incubator (CTRC) forms the cornerstone of a new world-class health sciences campus focused on the regeneration of downtown Buffalo. The master plan creatively juxtaposes internal and external space to stimulate the essential collaborative spirit between researchers and clinicians that will accelerate discoveries into medical practice. Courtesy: K C Kratt Photography (Click to enlarge)Project name: Kaleida Health, Clinical and Medical Research Building

Location: Buffalo, N.Y.

Firm name: Cannon Design

Project type, building type: New construction, hospital

Project duration: 4 years

Project completion date: June 1, 2012

Project budget for mechanical, electrical, plumbing, fire protection engineering only: $69.5 million

Engineering challenges

Kaleida Health, Clinical and Medical Research Building: Gates Vascular Institute (GVI), and UB Clinical Translational Research Center/Incubator (CTRC) Challenge: Create a hospital and translational research center with “100-year” flexibility. The GVI is a one-of-a-kind facility planned as the cornerstone of a world-class academic medical center being developed by Kaleida Health and the University at Buffalo, Buffalo 2020 Development Corporation. The $291 million, 476,000-sq-ft, 10-story facility consolidates services previously performed at two separate facilities, including cardiac catheterization, neurovascular intervention, electrophysiology, peripheral vascular intervention, cardiac surgery, neurosurgery, and peripheral vascular surgery—and provides the region with a major heart and vascular center. There is also an entire medical research facility with laboratories, imaging, a vivarium, and a research incubator.


To maximize flexibility and create a “100-year building,” the facilities” structure and its engineering systems infrastructure is designed utilizing a Universal Grid, a 31-ft 6-in. x 31-ft 6-in. x 18-in. floor-to-floor structural system with “headered” mechanical and electrical systems distribution to accommodate future technologies in operating suites and conversion of building zones to entirely different functions without having to modify “head-end” mechanical, electrical, and plumbing systems.

The new facility is provided with steam, chilled water, electricity, and emergency power from an expanded central plant that serves the entire medical campus. We added 2,200 tons of chilled water capacity to the existing 3,700-ton chiller plant. Campus distribution loop systems were created for the steam and chilled water systems. The chiller plant is also being converted to a variable primary flow system with upgraded chiller optimization controls. Chilled water will be provided year-round, and a winter free-cooling heat exchanger was designed to provide up to 1,200 tons of winter free-cooling when outside air temperature is below 40 F. A 6-MW emergency generator plant is being constructed to provide full backup power for the new facility. The electrical systems’ design also included the phased upgrade of all primary electrical distribution serving the existing hospital to accommodate capacity for the new building, including expanding the 23 kV substation and replacing the secondary 5kV distribution switchgear and underground feeder ductbank relocations required to clear the area for the new building. Coordination meetings were held with National Grid Engineers to plan the physical expansion of the substation, including construction phasing, ductbank and feeder arrangements, and equipment selection and layout. Design work included protective relaying equipment, three-line diagrams, a coordination study, and short-circuit calculations.

No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
HVAC and building envelope: Efficient, effective systems; Designing fire sprinkler systems; Wireless controls in buildings; 2015 Product of the Year winners
2015 MEP Giants: MEP Giants annual report; Mergers and acquisitions; NFPA 2001; Fiber-optic cables; LED specifications
Hospital IAQ: Indoor air quality in health care facilities; NFPA 72; Water use and conservation; Net-zero buildings
Designing positive-energy buildings; Ensuring power quality; Complying with NFPA 110; Minimizing arc flash hazards
Implementing microgrids: Controlling campus power generation; Understanding cogeneration systems; Evaluating UPS system efficiency; Driving data center PUE, efficiency
Optimizing genset sizing; How the Internet of Things affects the data center; Increasing transformer efficiency; Standby vs. emergency power in mission critical facilities
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.