Hot-water cooled supercomputer goes live

07/07/2010


IBM has delivered a first-of-a-kind hot water-cooled supercomputer to the Swiss Federal Institute of Technology Zurich (ETH Zurich), marking a new era in energy-aware computing. The innovative system, dubbed Aquasar, consumes up to 40% less energy than a comparable air-cooled machine. Through the direct use of waste heat to provide warmth to university buildings, Aquasar's carbon footprint is reduced by up to 85%.

Building energy efficient computing systems and data centers is a staggering undertaking. In fact, up to 50% of an average air-cooled data center's energy consumption and carbon footprint today is not caused by computing, but by powering the necessary cooling systems to keep the processors from overheating – a situation that is far from optimal when looking at energy efficiency from a holistic perspective.

Watch the video on the Aquasar system

The development of Aquasar began one year ago as part of IBM's First-Of-A-Kind (FOAK) program, which engages IBM scientists with clients to explore and pilot emerging technologies that address business problems. The supercomputer consists of special water-cooled IBM BladeCenter Servers, which were designed and manufactured by IBM scientists in Zurich and Boblingen, Germany. For direct comparison with traditional systems, Aquasar also holds additional air-cooled IBM BladeCenter servers. In total, the system achieves a performance of six Teraflops and has an energy efficiency of about 450 megaflops per watt. In addition, 9 kW of thermal power are fed into the ETH Zurich's building heating system. With its innovative water-cooling system and direct utilization of waste heat, Aquasar is now fully-operational at the Department of Mechanical and Process Engineering at ETH Zurich. 

The processors and numerous other components in the new high performance computer are cooled with up to 60 C warm water. This is made possible by an innovative cooling system that comprises micro-channel liquid coolers, which are attached directly to the processors, where most heat is generated. With this chip-level cooling, the thermal resistance between the processor and the water is reduced to the extent that even cooling water temperatures of up to 60 C ensure that the operating temperatures of the processors remain well below the maximally allowed 85 C. The high input temperature of the coolant results in an even higher-grade heat at the output, which in this case is up to 65 C.

Overall, water removes heat 4,000 times more efficiently than air. Aquasar is part of a three-year collaborative research program called "Direct use of waste heat from liquid-cooled supercomputers: the path to energy saving, emission-high performance computers and data centers." In addition to ETH Zurich and IBM Research - Zurich, the project also involves ETH Lausanne. It is supported by the Swiss Centre of Competence of support for Energy and Mobility (CCEM).



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Smoke control: Designing for proper ventilation; Smart Grid Standard 201P; Commissioning HVAC systems; Boilers and boiler systems
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
Cannon Design’s blog is a place for the many voices of the firm to share thoughts and news related to current projects...
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.