Effective partial-load condition strategies

Take advantage of a variety of common technologies and systems to help minimize the energy and cost expenditure of any facility’s daily operations.

03/20/2014


Because buildings don’t always (or typically ever) run at their peak design demand, taking advantage of a variety of common technologies and systems can help minimize the energy and cost expenditure of any facility’s daily operations.

Series temperature sensors, pressure sensors, flow measuring stations, flow meters, control valves, modulating dampers, variable frequency drives (VFDs), and electronically commutated motors (ECM) for fans and pumps are just a few examples of strategies that can be employed to bridge the gap between the peak mechanical, electrical, plumbing (MEP), and fire protection design and actual systems usage.

While a detailed description of the intricacies of VFD design is outside the scope of this article, it has fundamental pertinence due to its influence on system flow reduction and system pressure modulation. The VFD adjusts motor speed, which reduces the motor’s power consumption in reaction to system flow, applicable to major pumps and main fans of a building’s HVAC systems. Rather than a full horsepower motor, an “inverse duty” motor with a VFD would be trimmed to operate at reduced horsepower.

Theoretically, the power savings can be calculated from the aforementioned affinity law for power. Figure 1 illustrates VFD motor speed at a reduced system flow and head pressure. This control application trims down multiple subsystems in the building. Today’s VFDs are applicable to most major pumps and fans and have become a common addition to any large-capacity building.


Suzan X. Sun-Yuan is a senior associate and lead mechanical engineer with Environmental Systems Design. She has experience with super-tall buildings, food labs, and central plant designs and upgrades. Mohsen Aghai is a senior associate and lead electrical engineer with Environmental Systems Design. He has experience with super-tall, mixed-used, commercial, and governmental buildings as well as hospitals and central plant designs and upgrades.



Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2017 MEP Giants; Mergers and acquisitions report; ASHRAE 62.1; LEED v4 updates and tips; Understanding overcurrent protection
Integrating electrical and HVAC for energy efficiency; Mixed-use buildings; ASHRAE 90.4; Wireless fire alarms assessment and challenges
Integrated building networks, NFPA 99, recover waste heat, chilled water systems, Internet of Things, BAS controls
Transformers; Electrical system design; Selecting and sizing transformers; Grounded and ungrounded system design, Paralleling generator systems
Commissioning electrical systems; Designing emergency and standby generator systems; VFDs in high-performance buildings
Tying a microgrid to the smart grid; Paralleling generator systems; Previewing NEC 2017 changes
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.
Automation Engineer; Wood Group
System Integrator; Cross Integrated Systems Group
Fire & Life Safety Engineer; Technip USA Inc.
This course focuses on climate analysis, appropriateness of cooling system selection, and combining cooling systems.
This course will help identify and reveal electrical hazards and identify the solutions to implementing and maintaining a safe work environment.
This course explains how maintaining power and communication systems through emergency power-generation systems is critical.
click me