Designing electrical systems for higher education

06/10/2013


Figure 4: This diagram illustrates a sparing transformer system, which uses busway connections to single-ended unit-substations and is an alternative to the double-ended substation concept. Courtesy: Affiliated Engineers Inc.Backup systems

Reasons to provide backup power systems at university buildings stem from various code requirements for emergency and standby systems, as well as programmatic requirements for optional user-specified sensitive equipment. Generator systems, storage battery systems, and UPS systems are typical choices for universities to fulfill these special power requirements. The need for a generator system may arise from the total allocated capacity of the emergency, standby, and optional standby loads. Depending on the building type, the emergency loads are typically the smaller load, where the standby loads constitute the larger balance and may tip the scale toward the generator selection. Also, standby loads include a large component of motor loads, better handled by a generator system versus battery storage systems. When a generator is then selected, its capacity selection becomes a controversial topic in terms of determining what other optional standby loads will need to be served. Generators are mostly suited for larger buildings where the standby and optional loads add up, such as high-rise buildings and buildings with high-tech requirements, such as data centers. Smaller buildings with minimum emergency requirements can rely on battery systems (centralized or unitized) for the backup source. 

UPS systems are frequently employed in data centers and information technology (IT) equipment, and universities may need to determine which UPS system configuration is the most appropriate to install. For example, for the distributed technology equipment located in a typical floor of a facility, a choice can be made between individual rack-mounted UPS systems versus a centralized UPS system distributed to every IT closet. A centralized UPS system, with a wrap-around maintenance bypass component, may reduce maintenance calls, and may prove cost effective in a larger facility. Also, some researchers may request uninterruptible power for sensitive experiments, which similarly can be dealt with by a point-of-use UPS or a central system. 

Figure 5: This diagram illustrates a primary selective loop feeder distribution system at a Midwestern university campus. The loop is created by outdoor sectionalizing switches and point-of-use services derived via pad-mounted transformers with integral sAnother typical approach is to handle the optional standby loads as a separate system that will seldom be needed because, depending on the campus infrastructure, most outage times are brief in duration, but may need to be planned for as catastrophic events. In disaster planning, creating a connection point for a portable generating system may prove prudent, investing only in the initial infrastructure to have the ability to provide service to optional systems, such as refrigerators housing sensitive research samples. For these portable units, universities would typically have a rental agreement with a generator supplier and upon the warning of an approaching storm, for example, they could install the portable unit as a safety precaution. It is also common to provide this type of portable system provision in a central university building (i.e., Student Union), which can become a campus shelter for disaster planning and have power for normal business operations during the event (food preparation, student services). With this initial pre-investment, provisions also can be made to install a future permanent generator at this location. 



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.