Data center is solidly grounded

Syska Hennessy Group designed a data center that required solidly grounded underground duct banks.

05/16/2013


Recently, Syska Hennessy Group led the design of a large data center that required a 25 kV utility service, solidly grounded, in underground duct banks. The service was 25 kV, 100% insulation level, copper conductors with ethylene propylene rubber (EPR) insulation.

The facility has an on-site 25 kV/13.2 kV substation to supply a 13.2 kV distribution system in underground duct banks. The system is impedance grounded and can be operated with one phase grounded for an unlimited time. When design engineers couldn’t find a cataloged 15 kV class cable with 173% insulation level, Syska used a 25 kV-class cable with 100% insulation level, copper conductors, and EPR insulation. The data center’s electrical infrastructure 600 V class facility distribution system was designed solidly grounded in overhead conduits and includes the following:

  • 600 V class copper conductors with thermoplastic high heat nylon (THHN) insulation
  • 600 V class facility distribution system, solidly grounded, in underground duct banks
  • 600 V class copper conductors with rubber high heat waterproof (RHHW-2) insulation
  • 600 V class plug-in bus ducts with copper conductors for distribution to IT equipment cabinets
  • 600 V class feeder bus duct with copper conductors for maintenance bypass and load bank circuits that are only occasionally used
  • 600 V class cable bus with copper conductors for large capacity feeders in the critical distribution system.

 

Christopher M. Johnston is a senior vice president and the chief engineer for Syska Hennessy Group's critical facilities team. Johnston specializes in the planning, design, construction, testing, and commissioning of mission critical 7x24 facilities, and leads team research and development efforts to address current and impending technical issues in critical and hypercritical facilities. With more than 40 years of engineering experience, he has served as quality assurance officer and supervising engineer on many projects.



Anonymous , 06/11/13 08:36 PM:

If the 13.2kv system is ungrounded you need only a 133% cable insulation. When the system is high impedance grounded why use a 173% cable insulation? Should the 133% insulation suffice?
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Smoke control: Designing for proper ventilation; Smart Grid Standard 201P; Commissioning HVAC systems; Boilers and boiler systems
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
Cannon Design’s blog is a place for the many voices of the firm to share thoughts and news related to current projects...
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.