Case study: Bundling performance

Although LCCA of individual system alternates is often valuable, it is important to recognize the whole building return on investment that is the basis for a building’s overall success. A brief example of such an analysis is included here for the Stanford Yang and Yamazaki Environment and Energy Building.

03/21/2012


Figure 4: This LCCA shows six sequential strategy bundles and the predicted summation building bundle in red at the time of design. Courtesy: ArupThe results show the diversity of financial returns when energy investments are grouped into load reduction, passive systems, active efficient systems, energy recovery, self generation, and renewable energy offsets. The bold red line indicates the bundled performance of all strategies taken together. The results of this analysis helped convince Stanford University to elevate the performance of all future new and retrofit projects to a LEED Gold/Platinum level of energy performance.

Post-occupancy review

Figure 5: This chart models the effect of a post-occupancy performance audit and incentive award. Courtesy: ArupEnergy consumption models developed during building design rarely match actual operating energy consumption when buildings are built and operated. Instead, energy models produced during design are intended to be indicative of relative performance between a code-derived baseline model (e.g., ASHRAE 90.1 or Title 24 compliant) and a design model reflecting the actual building design.

Figure 6: This conceptual diagram illustrates the stack driven natural ventilation system. Courtesy: ArupThe focus on relative versus actual consumption is widely considered acceptable and is attributed to differences between simulation assumptions and actual operating conditions that influence energy consumption. Such conditions include changes to scheduling of equipment and lighting, occupancy density and behavior, climate variation, construction variances, and improper or incomplete commissioning. Some of these conditions are appropriate and can be addressed in a calibrated model, while others reflect an area of physical or operational deficiency that should be remedied.

Comparison and scenario evaluation of the Y2E2 facility post-occupancy showed that it uses more energy in absolute terms than the design stage model predicted. It also showed that the building saves more energy than initially predicted. As a result, there are larger absolute cost savings that actually provided a better return on investment. It should be noted that the percentage increase in relative energy performance remained consistent and only the absolute values varied. The caution from this review is that even though building physics can predict the relative performance of a building well, the absolute measure is more difficult, highlighting the need for rigorous sensitivity studies.

Roberts is an associate principal and energy and resources business leader in Arup’s San Francisco office. His experience ranges from climate-responsive building engineering and consulting to community energy systems, net-zero energy, and climate-positive design. Rhodes is a senior engineer in Arup’s San Francisco office, specializing in high-performance mechanical system design and energy monitoring. Hespe is a senior energy and sustainability designer in Arup’s San Francisco office, specializing in passive and ecological building design.



No comments
Consulting-Specifying Engineer's Product of the Year (POY) contest is the premier award for new products in the HVAC, fire, electrical, and...
Consulting-Specifying Engineer magazine is dedicated to encouraging and recognizing the most talented young individuals...
The MEP Giants program lists the top mechanical, electrical, plumbing, and fire protection engineering firms in the United States.
2014 Product of the Year finalists: Vote now; Boiler systems; Indirect cooling; Integrating lighting, HVAC
High-performance buildings; Building envelope and integration; Electrical, HVAC system integration; Smoke control systems; Using BAS for M&V
Pressure piping systems: Designing with ASME; Lab ventilation; Lighting controls; Reduce energy use with VFDs
Case Study Database

Case Study Database

Get more exposure for your case study by uploading it to the Consulting-Specifying Engineer case study database, where end-users can identify relevant solutions and explore what the experts are doing to effectively implement a variety of technology and productivity related projects.

These case studies provide examples of how knowledgeable solution providers have used technology, processes and people to create effective and successful implementations in real-world situations. Case studies can be completed by filling out a simple online form where you can outline the project title, abstract, and full story in 1500 words or less; upload photos, videos and a logo.

Click here to visit the Case Study Database and upload your case study.

Protecting standby generators for mission critical facilities; Selecting energy-efficient transformers; Integrating power monitoring systems; Mitigating harmonics in electrical systems
Commissioning electrical systems in mission critical facilities; Anticipating the Smart Grid; Mitigating arc flash hazards in medium-voltage switchgear; Comparing generator sizing software
Integrating BAS, electrical systems; Electrical system flexibility; Hospital electrical distribution; Electrical system grounding
As brand protection manager for Eaton’s Electrical Sector, Tom Grace oversees counterfeit awareness...
Amara Rozgus is chief editor and content manager of Consulting-Specifier Engineer magazine.
IEEE power industry experts bring their combined experience in the electrical power industry...
Michael Heinsdorf, P.E., LEED AP, CDT is an Engineering Specification Writer at ARCOM MasterSpec.